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ABSTRACT

The recent literature contains theorems improving on both the Standard

Bonferroni inequality (Hoover (1988-a)) and the Sidak/Slepian inequalities

(Glaz and Johnson (1984)). The application of these improved theorems to upper

bounds for non coverage of simultaneous confidence intervals on multivariate

normal variables is explored. The improved Bonferroni upper bounds will always

apply, while improved Sidak/Slepian bounds only apply to special cases. The

improved Sidak/Slepian upper bound, if it applies, is always superior to the

equivalent improved Bonferroni bound. This improvement, however, is not great

when both methods are used to determine upper bounds for Type I error in the

range of .01 to .10. It is shown that improved Sidak/Slepian bounds will apply

to Normal Markov Processes, a commonly occurring and easily identifiable class

of multivariate normal variables.
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1. INTRODUCTION

Recently, there has been considerable interest in improving on the

Bonferroni and Sidak/Slepian upper bounds fir simultaneous coverage of

multivariate normal confidence intervals (Hunter (1976), Glaz and Johnson

(1984), Hoover (1988-a)). Let X = (X1 8....X J be random variables with a joint

multivariate normal distribution. Define Ci as some constant greater than zero

for i=l,...,n. Often Ci will be ai * C where a is the variance of Xi and C >

0. Let E. i=l,...,n be events defined as follows: CASE I - (Two sided1

symmetric confidence interval): Ei is the event Ixil f (- Ci, Ci). CASE II -

(one sided upper limit interval): E. is the event Xi  (-C, Ci). CASE III

(one sided lower limit interval): Ei is the event Xi 4 (-Ci, 0).

n
Let Ec be the complement of event Ei and E = U [Ei]. Finally,

1 ii=1
c c

define P= P(E0 Pi = P[E1 } = (1-Pi ) and PE = P[E).

Usually, due to limitations on numerical integration, it will be

impossible to calculate PE exactly. Therefore, in order to be conservative, it

is desired to calculate U where U is an upper bound for PE. The closer U is to

P E' the better the conservative bound is. The importance of having good upper

bounds U arises from the many applications of simultaneous confidence intervals

(See Khatri (1967); Barlow and Proschan (1975); and Bauer and Hackel (1985)).

Sometimes, it may be of interest to obtain L, a lower bound for PE"

The Bonferroni and Sidak/Slepian upper bounds (UB and U respectively)

and the Slepian lower bound (Ls ) are now presented. Let X, Ei, E, Pi and PE be

as defined above. Let Pij be the correlation of X, and X. li<jn; then

(1) Bonferroni (1936) Inequality (Holds for all types of confidence

intervals)

n
P E UB = Z Pi

i=1

(2) Sidak (1968) Inequality (Holds for Case I two sided confidence

ir*ervals)

n
PE- 1S - P

i=l

(3) Slepian (1962) Upper and Lower Bound Inequalities (Holds for CASE
II and CASE III one sided confidence intervals)
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n
If pij > 0 for all i,j then PEC U= 1 - R Pi

i=1

n
If p.. < 0 for all i,j then P > LS = 1 - n P"

13- Ei= 

Note that the Slepian upper and Sidak bounds are identical except that

the Sidak bound holds for two sided confidence intervals while the Slepian

upper bound holds for one sided intervals.

It has been proven, (Dunn (1958)), that US in (2) and (3) is less than

(better than) the corresponding UB. It is also clear that Us is non

degenerate, US < 1 while UB can be degenerate, UB > 1 is possible.

Neither U B nor US uses the intersection structure within (El, E2, ...,

E n). That is, UB and US each produce the same values for n independent events

as they do for n positively correlated events. This is true even though PE can

be much lower for n positively correlated events than it is for n independent

events. For instance, suppose n = 6, and Pi = 0.5 for i = 1,...,6. If

El,....E 6 are

6
jointly independent, then P - I (P) = .2649; while under the mosti= 1

extreme correlation: ( E1 = E ..... EJ' PE = P1 = 0.5. However, in both

of the cases described above, the bound UB is 6(.05) = .30 and the bound Us, if

it applies, is 1 - (..95)6 = .2649.

In the above example and in general, the bounds UB and US approximate PE

well when the Ei are independent, but do more poorly when the Xi are

correlated. A similar problem holds for LS. Two methods that can incorporate

interaction (collinearity) between subsets of size k of the Ei to produce

sharper bounds for PE have recently been proposed. The first method, presented

in Section 2, is an extension of the Bonferroni theorem while the second

method, presented in Section 3, extends the Sidak/Slepian results.

2. THE EXTENDED BONFERRONI METHOD

Theorem 2.1 The Extended Bonferroni Bound (Hunter (1976) k=2, Hoover (1988-a)

k>2)

Let X, Ei, E and PE be as defined in the first paragraph of section 1.

Let k be an integer: 1<k<n. Suppose that it is possible to integrate over k

or
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rji-i
fewer dimensions or otherwise determine P tEU and

P Ui..+ E} for j=k,...,n.=j-k+l

Then

(4) PE UB,k = P U Ei + 1 (P fju 1 Eil - P {i +1 Eil
1=1 I J=k+l j-k+l J-k+

The proof follows from Theorem 1 from Hoover (1988-a) with the set S.

containing [j-1, j-2, ..., j-k+l) .

This theorem, like the standard Bonferroni bound, is distribution free.

The events E1 , E2,..., En can be any events (not merely those defined by

confidence intervals on multivariate normal variables) and the inequality (4)

will hold. When the Ei are as defined in Section 1, it is currently

computationally possible to integrate over multivariate normal densities of up

to 4 dimensions, (see Schervish (1984)), and thus implement this theorem for k

< 4. Undoubtedly as computers and computational methods improve, it will

become possible to implement this theorem for even larger values of k.

When k=1, Theorem 2.1 reduces to the Standard Bonferroni Bound. It is

shown in Hoover that UB,k always is monotonically decreasing (improving) as k

increases. However, the extended Bonferroni upper bound, like the Bonferroni

upper bound, can be degenerate (See Table 6.1).

3. THE EXTENDED SIDAK/SLEPIAN METHOD

The extended Sidak and Slepian bounds will now be presented. These

bounds will hold only for those normal (and other) distributions which have

certain TP2 or MRR2 properties. Definitions 3.1, 3.2 and 3.3 are given to

define these MTP2 and MRR2 properties.

Definition 3.1 (Karlin and Rinot (1980-a)) A real function (or joint

density) of two variables f(W,Y) is Totally Positive of Order Two, (TP2) if for

all fixed values w1<w2 and yl<y2
,

(5) f(wlyl) f(w2,y2 ) - f(wly 2 ) f(w2 ,y1 ) 0

Definition 3.2 (Karlin and Rinot (1980-a)) A real valued function (or

joint density) of n variables f(X1,...,Xn) is Multivariate Totally Positive of

Order Two, (wrP2)' if for any pair of variables Xi and X, the function f(Xi,

Xj) with the remaining variables fixed is TP2.
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Definition 3.3 (Karlin and Rinot (1980-b)). The bivariate function of

Definition 3.1 is Reverse Rule of Order Two (RR2) and the multivariate function

of Definition 3.2 is Multivariate Reverse Rule of Order Two (MRR2 ) if the

direction of the inequality in (5) is reversed.

A pair of variables (XI, X2 ) is said to be TP2 (RR2) if its joint density

is TP2 (RR2) respectively. A sequence of variables (X1 ,..., Xn ) is said to be

MTP2 (MRR2 ) if its joint density is MTP2 (MRR2 ) respectively.

Theorem 3.1 The Extended Sidak/Slepian Bounds (Glaz and Johnson (1984))

Let Xi, Ei, E, and PE be as defined in the first paragraph of section 1,

with the exception that X is now allowed to have any distribution not only the

multivariate normal. Let k be an integer, l<k<n. Assume that it is possible

to integrate over k dimensions or otherwise determine P tE1 ijnlk Ecj . Then
Ji=j-kl

(a) (Extended Slepian Upper Bound) If X is MTP 2 it follows when the

events E. are either all one sided upper limit intervals or all one sided lower1

limit intervals that

k c n P j-1

PE < US,k I-P"=f1 1 j=k+ J i=j-kl }

(b) (Extended Slepian Lower Bound) If X is MRR2 it follows when the

events Ei are either all one sided upper limit intervals or all one sided lower

limit intervals that

PE=L - E. • H P fIj 1Ec

P LS,k -P'=l E j=k+l { I i=j-k+ }

(c) (Extended Sidak Bound) If i is MTP2 it follows when the events E.

are all two sided symmetric confidence intervals that

k c) n 1 f~clj- 1
P <Us -Pff E. H P ElE - S,k =1 1 j=k+l i=j-k+l )

The proofs of statements (a), (b) and (c) follow from Theorems 2.3 and

2.8 in Glaz and Johnson (1984) when one realizes that:

(i) P(Xi C (-Ci, Ci)1 = PixiI. £ (--, Ci)} (an infinite interval)



-5-

lower) nupper~is a e bound for P n EC) then 1-k is a bound(i)If Yk (ua pper tower)

for PE = P Ei}
t1

Note that when X is normal, III will never be MRR2 and thus there is no "Sidak

like" lower bound for PE in the two sided case.

For k=1, the bound in Theorem 3.1 is equivalent to the Sidak/Slepian

Bounds. US,k like Us is non degenerate and is monotonically decreasing with k,

while LS,k is monotonically increasing with k; see Glaz and Johnson (1984). As

mentioned earlier, the extended Sidak and Slepian bounds do not hold for all

normal distributions. Section 5 describes in detail some important

distributions for which they do hold. Finally, Theorem 3.1 can be applied to

multivariate t distributions; see Glaz and Johnson (1984).

4. EXTENDED SIDAK/SLEPIAN BOUND IS SUPERIOR TO EXTENDED BONFERRONI BOUND

Two methods have been proposed for obtaining upper bounds which utilize

interactions between subsets of events, namely the extended Bonferroni (UB,k)

and the extended Sidak/Slepian (US,k) bounds. It is therefore of interest to

know which, if either, gives better results. The next theorem shows that

whenever the extended Sidak/Slepian method applies, it produces better upper

bounds than does the equivalent extended Bonferroni Method.

Theorem 4.1. Superiority of US,k_ over UB,k, Glaz (1988), Hoover (1988-b)

Let X, Ei, PE' UB,k and US,k be as defined in Theorem 3.1. Let E be the

covariance of X. Also assume that X (or xi1) and Ei have the required

properties for Theorem 3.1 to apply. Then for any fixed k:

(i) U s,k = UB,k = PE for k=n

(ii) US,k UB,k for k<n

(iii) If X has a multivariate normal (or t) distribution and the

covariance ( Z ) is full rank, then US,k < UB,k for k < n.

Proof - This Theorem has been independently proven by Glaz (1988) and Hoc-er

(1988-b). The proof from Hoover (1988-b) is in the appendix.

Not only is US,k superior to UB,k for any fixed value of k < n, but also

US,k is computationally no more difficult to calculate than is UB,k . This is

because P { E fi 1 P U Ei . Therefore, whenever theiwJ-k+l i ifj-k+l
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distributional conditions are met for using the extended Sidak/Slepian upper

bound, this bound should be used instead of the corresponding extended

Bonferroni upper bound.

5. SOME IMPORTANT DISTRIBUTIONS TO WHICH EXTENDED SIDAK/SLEPIAN BOUNDS APPLY

Since it has been proven that whenever the extended Sidak/Slepian upper

bound is applicable, it gives better results than does the comparable extended

Bonferroni bound and since an extended Slepian lower bound exists, it is of

interest to identify important situations in which the extended Sidak/Slepian

bounds apply.

The extended Slepian upper (lower) bounds require that the variables (X)

have an MTP2 (MRR2 ) structure. It follows from Bolviken (1982) and Karlin and

Rinott (1980-a), that if X - N(u, E) then X is MTP2 iff .. > 0 for i j where

pij is the partial correlation of Xi and X. given all other variables in the

vector X. Karlin and Rinot (1980-b) give sufficient conditions on E for a

multivariate normal vector X to be MRR 2.

The extended Sidak bound requires II to be MTP2. It follows from Karlin

and Rinot (1980-a) and Bolviken (1982) that if X is a multivariate normal

vector, then III is MTP2 iff there exists some diagonal matrix D with ID ii -

1, i=1,..., n, such that Y = D X and * 2' > 0 for all i,j where _P is the

partial correlation of Yi and Yj given all other variables in the vector Y.

It turns out that many multivariate normal processes of interest have the

above properties. The next theorem shows that multivariate vectors for which

each successive component is a successive time realization of a Markov process

have MTP 2 and/or MRR2 properties.

Theorem 5.1 MTP2 and MRR2 Properties of Normal Markov Processes.

Let X = (X1,...,Xn) be a Normal Markov Process, that is: X1, X2 ..., Xn are

successive outcomes of a Markov Process for i=l,...,n and (X1,...Xn) has a

multivariate normal distribution. Then

(a) III is MTP2

(b) if 0ii1 0 for i=l,...,n-1 then X is MTP2.

(c) if Pi,i+ 0 for =1,...,n-1 then X is MRR2.

Proof

(a) Since IXi+lI = I- Xi+iI and at least one of the following (Corr(Xi,

Xi1 ), Corr (X, - Xi )) is non negative for i=1,...,n-1, it follows from

Bolviken (1982) that (IX i I, IXi+iI) is TPi2. Since (XI, 1X2,..Xn) is a Markov
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chain, (IX11, X21,..., Xnl) is also a Markov chain. Therefore, (1X11,
IX2 1,..., lXnI) is a Markov chain with TP2 transition probabilities and by
proposition 3.10 in Karlin and Rinot (1980-a) it follows that IXI = (IX11,

IX2 I,*' ' ,IXnl) is MTP2.
(b) Since Corr (Xi,Xi+) is non negative, it follows from Karlin and

Rinot (1980-a) that (Xi,Xi+I ) is TP2 . Therefore, XIX2,...X n is a Markov

chain with TP2 transition probabilities and by proposition 3.10 in Karlin and

Rinot (1980-a) it follows that (Xl,X 2 ,...,Xn) is MTP 2.

(c) Since Corr (Xi, Xi+l) is nonpositive, (Xi, - Xi+1 ) is TP2 which

means that (Xi , Xi+ I ) is RR2 . Therefore, X1, X2 ,..., Xn is a Markov chain with

RR2 transition probabilities; so by a slight modification of proposition 3.10

in Karlin and Rinot (1980-a), it follows that (X1, X2, ..., Xn ) is MRR 2.

There are many normal Markov Processes which are of interest in practice.

Some important examples are given in Section 6. The extended Bonferroni upper

bound has previously been applied and/or recommended for these examples for

which a superior extended Sidak/Slepian upper bound could be applied. In

Section 6, it will be shown how much improvement the extended Sidak upper bound

gives over the equivalent extended Bonferroni upper bound for these examples.

Extended Slepian bounds are not considered since in practice one sided

confidence intervals are not of as much interest as are two sided confidence

intervals.

6. IMPROVEMENTS USING US,k GIVES OVER USING UB,k FOR SELECTED NORMAL MARKOV

PROCESSES

The extended Sidak bound is compared to the equivalent extended

Bonferroni bound for the following three examples of normal Markov processes.

6.1 AR(1) TIME SERIES

Consider (X ,X) as n successive observations of a stationary time

series with X - N (0) .,n, and a known. Also assume Xi+1  p * Xi +

9i for i=l,...,n-1 where O<p 1 and ci - N(O, 2(1-p 2)). Then X = (XI,...,X n )

is an AR(1) Markov process as described in Box and Jenkins (1976) and X has a

multivariate normal distribution with Var(Xi)=2 and Cov(Xi ,Xi+l) = pa. By

Theorem 5.1, I1 is MTP2 and therefore, by Theorem '.1. the extended Sidak

method applies to two sided confidence intervals involving K. Since the

covariance of X is full rank, by Theorem 4.1, the extended Sidak/Slepian upper

bound is better than the extended Bonferroni bound. Table 6.1 compares US, 2

and US, 3 with UB,2 and UB,3 on AR(1) processes using selected values of n, p

and C.
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TABLE 6.1

Extended Sidak and Extended Bonferroni Upper Bounds for Non Simultaneous

Coverage of Two Sided Confidence Intervals on AR(1) Time Series Variables where

C. = C.a for i=l,...,n.1

C = 1.96
k=2 k=3

n U B,2  US,2  UB,3 - US, 3

.3 5 0.23047 0.21801 0.22381 0.21781
10 0.45606 0.38689 0.43831 0.38646
50 > 1 0.91244 > 1 0.91207

100 > 1 0.99231 > 1 0.99225
.7 5 0.18368 0.17689 0.17553 0.17248

10 0.35104 0.31194 0.32900 0.30207
50 > 1 0.83596 > 1 0.82132

100 > 1 0.97627 > 1 0.96746
.9 5 0.13141 0.12883 0.12220 0.12125

10 0.23317 0.21823 0.20863 0.19996
50 > 1 0.67125 0.90005 0.62237

100 > 1 0.88867 > 1 0.85225
.99 5 0.07631 0.07604 0.07155 0.07147

10 0.10920 0.10759 0.09652 0.09579
50 0.37235 0.32415 0.29625 0.26872

100 0.70129 0.52252 0.54590 0.43915

C = 3.00
k=2 k=3

P n UB,2  US,2  U B,3  US,3

.3 5 0.01331 0.01327 0.01326 0.01324
10 0.02657 0.02632 0.02644 0.02624
50 0.13265 0.12469 0.13187 0.12430

100 0.26526 0.23381 0.26365 0.23310
.7 5 0.01166 0.01163 0.01148 0.01146

10 0.02286 0.02268 0.02385 0.02225
50 0.11245 0.10674 0.10961 0.10440

100 0.22444 0.20172 0.21864 0.19745
.9 5 0.00861 0.00860 0.00820 0.00819

10 0.01601 0.01593 0.01489 0.01484
50 0.07517 0.07265 0.06846 0.06471
100 0.14912 0.13897 0.13543 0.12722

.99 5 0.00469 0.00469 0.00438 0.00437
10 0.00717 0.00716 0.00631 0.00631
50 0.02704 0.02676 0.02189 0.02172

100 0.05188 0.05070 0.04137 0.04066

Numerical Integration to a relative accuracy of 0.00001 done using Shervish's

(1984) program
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6.2 SEQUENTIAL TESTING USING MEANS OF NORMAL VARIABLES

Let Xi be iid N(U, 2 ) with 2 known. Suppose it is of interest to test

Ho: P=O and also that it is expensive or inconvenient to sample the Xi . Then

one approach for testing H involves a sequential sampling of the Xi with at

J
each step calculating Y. = Z X. for j=l,...,n. Also, at each step, a two

i Ji=1 1

sided confidence interval for v of the form Y - C.V'ar(Y.) < v < Y. +
JJ j

C'Var(Y.) where C>O is constructed. H is rejected immediately and sampling
J 0

is stopped at the first step j where the confidence interval does not include

zero. If all confidence intervals include zero, then H is accepted.

Bauer and Hackel (1985) suggest using UB, 2 as an upper bound for the

type I error because of the high correlation between Y. and Y j+ which equals

But since Y = (Y,Y 2,... ,Yn) is a normal Markov process with a full

rank covariance, then by Theorems 5.1 and 4.1, US,2 will give even better
upper bounds for type I error. Table 6.2 compares UB, 2 and US,2 for various

values of n and C.

TABLE 6.2

Extended Sidak and Extended Bonferroni Upper Bounds for Type One Error of

Sequential Testing Using Means of Normal Variables (See Section 5.2)

n C=1.96 C=2.50 C=3.00
UB,2 US,2 UB,2 US, 2  UB,2 US,2

10 0.23785 0.22229 0.06724 0.06592 0.01616 0.01608
20 0.35794 0.31520 0.10302 0.09921 0.02513 0.02489
50 0.59846 0.46895 0.17493 0.16255 0.04325 0.04245
80 0.77248 0.55809 0.22705 0.20563 0.05640 0.05500
100 0.87067 0.60159 0.25647 0.22896 0.06283 0.06201

* Numerical Integration to a relative accuracy of 0.00001 done using
Schervish's (1984) Program.

6.3 DETECTION OF A CHANGE POINT IN A NORMAL SERIES

Under Ho0, Let Xl,...Xn be £,ad-pendently distributed N(li, 2) with a2 known.

While under HA, let the n observations be independent realizations of the
series Xi .... ,Xm_1 and X m Xn distributed as N(wl, 2 ) and N(p2, 2)

respectively. The "Change Point" m is unknown. To test H vs. HA, confidence

intervals of the form (W. - C(var(W.), W. + C(var(Wj)) are constructed about

the standardized likelihood ratio statistic
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j n
E Xi/j - E Xi/(n-j)

i=1 i=j+1 for j=1,...,n-1

+ = j)

H is rejected if and only if one of the above confidence intervals does0

not cover zero. Both Bauer and Hackel (1985) and Talwar (1983) suggest using

UB, 2 as an upper bound for the type I error because of the high correlationbeteenWj nd j+I which equals (Jn- -l) J
+l)(n-j) . Since WI,W 2,.., are

realizations of a normal Markov chain with a full rank covariance, then by

Theorem 4.1, US,2 will give a better upper bound to the type I error than will

UB, 2. Table 6.3 compares US,2 with UB,2 for various values of C and n.

TABLE 6.3*

Extended Sidak and Extended Bonferroni Upper Bounds for Type One Error of
Testing

for a Change Point in a Normal Series

n C=1.96 C=2.50 C=3.00
UB,2  US,2  UB,2 US,2  UB,2  US,2

10 0.30629 0.27531 0.08348 0.08129 0.01954 0.01941
20 0.49298 0.40797 0.13985 0.13240 0.03358 0.03135
50 0.87262 0.60395 0.25327 0.22669 0.06212 0.06042
80 > 1 0.70358 0.33538 0.28845 0.08284 0.07975

100 > 1 0.74822 0.38170 0.32108 0.09454 0.09048

Numerical integration to a relative accuracy of 0.00001 done using
Schervish's (1984) program

6.4 DISCUSSION
Define U S,k/UB,k as the efficiency ratio (ER) of the extended Bonferroni

upper bound relative to the extended Sidak upper bound. By Theorem 4.1, ER <

1. The closer this ratio is to one, the better the extended Bonferroni does

with respect to the extended Sidak.

In all of the tables, the efficiency ratio is decreasing in n and

increasing in C. For instance, in Table 5.2, the ER for n=10 and C=1.96 is

0.9345 while the ER for n=100 and C=1.96 is 0.6908, and the ER for n=10 and

C=3.00 is 0.9950. The lowering of ER with respect to n is a result of the

inductive nature shown in step 2 of the proof of Theorem 4.1. In this step, it

was shown that [UB,k - US,k] for j+1 events was larger than [UB,k - US,k] for
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the first j of these events. The increase in ER as C becomes larger is

probably related to a similar phenomenon observed with the original Bonferroni

and Sidak bounds. As Pi becomes small, which happens when C becomes large,

UB/US + 1 (see Dunn (1958)).

In Table 6.1, pi,i+l is equal to a constant value p for all i.1,2,...,n-

1. The ER decreases in p. For instance, with C=1.96, n.10 and k.2; the ER is

0.8483 when p=0.3 and 0.9852 when p=0.99. Thus, the extended Sidak improves on

the extended Bonferroni more when the correlation is lower between the normal

variables involved in the adjacent events.

Table 6.1 also has values of UB, 3 and US, 3 in addition to values of UB,2

and US, 2. When C is small (C = 1.96), UB, 3 and U B,2 are often degenerate

and/or even UB,3 is larger than US,2. For instance, when C - 1.96, p=0.7 and

n=50, both UB,2 and UB,3 are greater than one. Meanwhile, US,2, which must be

non-degenerate, is 0.82132 which, of course, is less than UB, 3.

Most applied statisticians are interested in upper bounds for the

probability of type I error which are either 0.01, 0.05 or 0.10. The ER's

observed in these tables when upper bounds were between 0.01 and 0.10 ranged

from 0.8307 to = 1.0. In many of these cases, the extended Sidak bounds were

not drastically lower than were the corresponding extended Bonferroni bounds.

Something which should be considered when using multivariate normal

approximations is that the density being approximated may not be MTP 2 even

though the normal approximation is MTP2. In this situation, extended Sidak

bounds may be less appropriate than are extended Bonferroni bounds. Since UB,k

and US,k are close together when they are in the range of interest to applied

statisticians, the investigator does not lose much by using the more

conservative and possibly more correct extended Bonferroni bound.
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APPENDIX

Proof of Theorem 4.1

STEP 1 For k=n, US,k = I-P E = P = PU Ei = UBkSk t1 " =1 j U~

and hence statement (i) of Theorem 4.1 has been proven.

STEP 2 For k<n (By induction)

Let (X.) be the first j elements of the vector X for j=k, k+1, ...,n. It

is a fact that if X is MTP2, then X. is also MTP 2 .  (See Karlin and
J

Rinot (1980)). So define E(j) to be U Ei and P(J) to be P(E(j)) where Ei is
i=i

as defined in Section 1. Let UM and UM be the extended Bonferroni and
B,k S,k

extended Sidak/Slepian upper bounds for P(J). It will now be shown that if

UM < UM then U (J I) < U0+1)
S,k - B,k , B,k

s,k 1- ( p E.+ii=jJ-k+2 E P i=k h=j - k+ l

S U 0i J E (I -
J+1 ji=j-k 2 S,k'

=1 - (1 - U Sj ) -  P n+
S, k =j -k+2 t-j-k 2

Since UMj  < UWj  by assumption
-S,K - B,k

- ( B,k) tj-k2 E) =j-k+2

Since P U Ei  = P n Ec
--[=j-k+2 Pi-j-k+2
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(c

M) P J+ nru E + P E
1 - UB, k 1% L~-k+2i U-J-k+2 i.

(- U B) f{L~j-k+2 Ei] - {i Lj-k+2 E]C

-1-(1 - U(i)) + 1-u~k P{Ejl n ri

r j
________ P n E~ i

()since B,k - =1 )
n E } P 1

iA i}

(5) UM + P{Ej ~ n Ei] }

U(j) + E U E'
- UB k + l~iJ-k+2 'I - =jjk+2

expanding UJB,k

P U{~i Ei} + ij2:l [L~iik+1 Eh} - LLiBZ+ 1 E h}]

=B,k

But now the proof is finished since in Step 1 it was show, that

u(k) u(k) vhc mle yteieult fSe ht~(k+1) ~ (k+l)an
US,k UB, k whc mle yteieult fSe htUS,k <UB,k an

*def () ()def
by induction on this inequality n-k times that U S = 0 Un)~ < U1 n -~ = B~

and hence statement (ii) of Theorem 4.1 is proven.
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STEP 3. When the E are confidence intp- als for multivariate normal (or t)
variables with a full rank covariance matrix, then the inequalities (*) and (5)
are strict and thus statement (iii) of Theorem 4.1 follows.

a
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